Explicit representation of compact conformally flat hypersurfaces
نویسندگان
چکیده
منابع مشابه
The Symmetry Group of Lamé’s System and the Associated Guichard Nets for Conformally Flat Hypersurfaces
We consider conformally flat hypersurfaces in four dimensional space forms with their associated Guichard nets and Lamé’s system of equations. We show that the symmetry group of the Lamé’s system, satisfying Guichard condition, is given by translations and dilations in the independent variables and dilations in the dependents variables. We obtain the solutions which are invariant under the acti...
متن کاملClosed Hypersurfaces of Prescribed Mean Curvature in Locally Conformally Flat Riemannian Manifolds
We prove the existence of smooth closed hypersurfaces of prescribed mean curvature homeomorphic to S for small n, n ≤ 6, provided there are barriers. 0. Introduction In a complete (n+1)-dimensional manifold N we want to find closed hypersurfaces M of prescribed mean curvature. To be more precise, let Ω be a connected open subset of N , f ∈ C(Ω̄), then we look for a closed hypersurface M ⊂ Ω such...
متن کاملOn the Ricci Curvature of Compact Spacelike Hypersurfaces in Einstein Conformally Stationary-Closed Spacetimes
In this paper we develop an integral formula involving the Ricci and scalar curvatures of a compact spacelike hypersurface M in a spacetime M equipped with a timelike closed conformal vector field K (in short, conformally stationary-closed spacetime), and we apply it, when M is Einstein, in order to establish sufficient conditions for M to be a leaf of the foliation determined by K and to obtai...
متن کاملConformally invariant bending energy for hypersurfaces
The most general conformally invariant bending energy of a closed four-dimensional surface, polynomial in the extrinsic curvature and its derivatives, is constructed. This invariance manifests itself as a set of constraints on the corresponding stress tensor. If the topology is fixed, there are three independent polynomial invariants: two of these are the straighforward quartic analogues of the...
متن کاملKaluza-klein Reduction of Conformally Flat Spaces
A “conformal tensor” is constructed from the metric tensor gMN (or Vielbein e A M ) and is invariant against Weyl rescaling gMN → egMN (or eM → eeM ). Moreover, it vanishes if and only if the space is conformally flat, gMN = e ηMN (or e A M = eδ M ). In dimension four or greater the conformal tensor is the Weyl tensor. In three dimensions the Weyl tensor vanishes identically, while the Cotton t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tohoku Mathematical Journal
سال: 1998
ISSN: 0040-8735
DOI: 10.2748/tmj/1178224972